论文与专著
当前位置: 网站首页  >  师资队伍  >  讲师  >  陈勇  >  论文与专著
陈勇
性别:男 学历:研究生 学位:博士
联系方式:chenyong@zufe.edu.cn 办公地点:9-409
软件工程系
研究方向:城市计算、出行行为复杂性、时空数据挖掘等

近年来致力于大数据驱动的城市出行模式分析与预测研究,深入研究时空数据挖掘理论、交通流宏观规律、居民出行决策等关键问题,在时序建模与空间相关性挖掘、复杂动态交通状态预测、个体群体出行分析与预测等方面取得创新性系列成果。部分成果如下:

科研论文

注:*表示通讯作者,#表示共同第一作者,IF为最新影响因子

[1]Chen Y., Xu H.G., Chen X.M.*, & Gao Z.Y.* A multi-scale unified model of human mobility in urban agglomerations.Patterns, 4(11), 100862, 2023. (Cell子刊, IF = 6.7)

[2]Chen Y., Chen X.M.*, & Gao Z.Y.* Toward equity, transparency, and collaboration human mobility computing for smart cities.TheInnovation, 5(5), 100672, 2024. (Cell合作子刊, IF = 33.2)

[3]Chen Y.,Xie N.K., Xu H.G., Chen X.M.* & Lee D.H. A multi-context aware human mobility prediction model based on motif-preserving travel preference learning.IEEE Transactions on Intelligent Transportation Systems, 25(2), 2139-2152, 2024. (SCI, JCR-Q1, CCF-B, IF = 7.9)

[4]Chen Y.#, Chi B.#, Li C.J., Zhang Y.L., Liao C.L., Chen X.M.*, & Xie N.* Towards interactive next location prediction driven by large language models.IEEE Transactions on Computational Social Systems, DOI: 10.1109/TCSS.2024.3522965, 2025. (SCI, JCR-Q1, IF = 4.5, CCF-C)

[5]Chen Y., & Chen X.M.* A novel reinforced dynamic graph convolutional network model with data imputation for network-wide traffic flow prediction.Transportation Research Part C: Emerging Technologies, 143, 103820, 2022. (SCI, JCR-Q1, IF = 7.6,入选ITS智能交通协会会刊, Google Scholar引用量50+)

[6]Chen Y., Chen X.M.*, & Gao Z.Y.* Meet the authors: Yong Chen, Xiqun (Michael) Chen, and Ziyou Gao,Patterns, 4(11), 100877, 2023. (Cell子刊,特邀专题访谈,IF = 6.7)

[7]Chen Y., Li C.J., Wang W.R., Zhang Y.L., Chen X.M.*, & Gao Z.Y.* Sustainable mobility and transport: Landscape, trends, challenges, and opportunities.npj Sustainable Mobility and Transport, 2, 8, 2025. (Nature合作子刊)

[8]Chen Y., Zhang H.Y., Li C.J., Chi B., Wu J.J.*, & Chen X.M.* Large language model empowered smart city mobility.Frontiers of Engineering Management, 12, 201-207, 2025. (FMS-B,中科院一区, IF = 9.1)

[9]Chen Y., Wang W.R., & Chen X.M.* Bibliometric methods in traffic flow prediction based on artificial intelligence.Expert Systems with Applications, 228, 120421, 2023. (SCI,中科院Top期刊, JCR-Q1, IF = 7.5)

[10]Liu J.M.#, Li J.Y.#,Chen Y.#, ... & Chen X.M.* Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management.Applied Energy, 331, 120407, 2023. (SCI, JCR-Q1, IF = 10.1, Google Scholar引用量50+)

[11]Chen Y., Geng M.S., Zeng J.Q., Yang D., Zhang L., & Chen X.M.* A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation.Physica A:Statistical Mechanics and its Applications, 628, 129167, 2023. (SCI, JCR-Q2, IF = 2.8)

[12]Chen Y.,Zhang S.*, Zhang W.Y., Peng J.J., & Cai Y.S. Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting.Energy Conversion and Management, 185, 783-799, 2019. (SCI, JCR-Q1, IF = 9.8, Google Scholar引用量200+)

[13]Xiao J.H., Cai Y.S., &Chen Y.* Study on deep reinforcement learning for multi-task scheduling in cloud manufacturing.International Journal of Computer Integrated Manufacturing, doi: https://doi.org/10.1080/0951192X.2025.2452981. (SCI, JCR-Q2, FMS-B, IF = 3.7)

[14]Zhang S.,Chen Y.,Zhang W.Y.*, & Feng R.J. A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting.Information Sciences, 544, 427-445, 2021. (SCI,中科院Top期刊, JCR-Q1, Google Scholar引用量100+)

[15]Zhang S.,Chen Y.,& Zhang W.Y.*Spatiotemporal fuzzy-graph convolutional network model with dynamic feature encoding for traffic forecasting.Knowledge-Based Systems, 231, 107403, 2021. (SCI,中科院Top期刊, JCR-Q1, IF = 7.2)

[16]Zhang S.,Chen Y.,Xiao J.H., Zhang W.Y.*, & Feng R.J. Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism.Renewable Energy, 174, 688-704, 2021. (SCI, JCR-Q1, IF = 9.0, Google Scholar引用量100+)

[17]Zhang S.,Chen Y.,Huang X.L.*, & Cai Y.S. Text classification of public feedbacks using convolutional neural network based on differential evolution algorithm.International Journal of Computers Communications & Control, 14(1), 124-134, 2019. (SCI, JCR-Q3, IF = 2.0)

[18]Xia Y.J., Geng M.S,Chen Y., ... & Chen X.M.* Understanding common human driving semantics for autonomous vehicles.Patterns, 4, 100730, 2023. (Cell子刊,封面论文, IF = 6.7)

[19]Xu H.G.,Chen Y., & Chen X.M.*. Understanding ride-sourcing drivers' working patterns based on platform operations data.Transportation Research Part A: Policy and Practice, 194, 104426, 2025. (SCI, JCR-Q1, IF = 6.3)

[20]Geng M.S.,Chen Y.,Xia Y.J., & Chen X.M.* Dynamic-learning spatial-temporal transformer network for vehicular trajectory prediction at urban intersections.Transportation Research Part C: Emerging Technologies, 156, 104330, 2023. (SCI, JCR-Q1, IF = 7.6)

[21]Cai Z.E.,Chen Y., Mo D., Liu C.J., & Chen X.M.*. Competition and evolution in ride-hailing market with aggregated services: A dynamic duopoly game model.Transportation Research Part C: Emerging Technologies, 164, 104665, 2024. (SCI, JCR-Q1, IF = 7.6)

[22]Xu H.G.,Chen Y., Li C.J., & Chen X.M.*. Space-time adaptive network for origin-destination passenger demand prediction.Transportation Research Part C: Emerging Technologies, 167, 104842, 2024. (SCI, JCR-Q1, IF = 7.6)

[23]Shen L.T., Li J.Y.,Chen Y.,Li C.J., Chen X.M.* & Lee D.H. Short-term metro origin-destination passenger flow prediction via spatio-temporal dynamic attentive multi-hypergraph network.IEEE Transactions on Intelligent Transportation Systems, 25(8), 9945-9957, 2024. (SCI, JCR-Q1, IF = 7.9)

[24]Zeng J.Q., Yu Y.,Chen Y., Yang D., Zhang L., & Wang D.H.* Trajectory-as-a-Sequence: A novel travel mode identification framework.Transportation Research Part C: Emerging Technologies, 146, 103957, 2023. (SCI, JCR-Q1, IF = 7.6)

[25]Li C.J., Geng M.S.,Chen Y.,Cai Z.E., Zhu Z. & Chen X.M.* (2023). Demand forecasting and predictability identification of ride-sourcing via bidirectional spatial-temporal transformer neural processes.Transportation Research Part C: Emerging Technologies, 158, 104427. (SCI, JCR-Q1, IF = 7.6)

[26]郑思静,陈勇,朱奕璋,陈喜群*.基于个体记忆效应和距离效应的出行目的地识别.浙江大学学报(工学版), 58(4), 2024. (EI)


授权发明专利

[1]张帅,陈勇,张文宇,一种交通预测方法及装置,专利号:ZL 202110297442.7

[2]张帅,张文宇,陈勇,彭娟娟,裘一蕾,一种基于多因素时空相关性的风速预测方法及装置,专利号:ZL 201910115704.6

[3]张文宇,陈子旋,张帅,陈勇,冯睿隽,一种基于分块矩阵和模糊运输时间的车辆路径优化方法,专利号:ZL 201910526892.1